Produktbild
Vadim Azhmyakov

A Relaxation-Based Approach to Optimal Control of Hybrid and Switched Systems

A Practical Guide for Engineers

Ebook (EPUB Format)

A Relaxation Based Approach to Optimal Control of Hybrid and Switched Systems proposes a unified approach to effective and numerically tractable relaxation schemes for optimal control problems of hybrid and switched systems. The book gives an overview of the existing (conventional and newly developed) relaxation techniques associated with the conventional systems described by ordinary differential equations. Next, it constructs a self-contained relaxation theory for optimal control processes governed by various types (sub-classes) of general hybrid and switched systems. It contains all mathematical tools necessary for an adequate understandin… Mehr

CHF 140.60

Preise inkl. MwSt. und Versandkosten (Portofrei ab CHF 40.00)

Versandfertig innerhalb 1-3 Werktagen
Versandkostenfrei

Produktdetails


  • ISBN: 978-0-12-814789-4
  • EAN: 9780128147894
  • Produktnummer: 35967509
  • Verlag: Elsevier Science & Techn.
  • Sprache: Englisch
  • Erscheinungsjahr: 2019
  • Seitenangabe: 434 S.
  • Plattform: EPUB

Über den Autor


Vadim Azhmyakov graduated in 1989 from the Department of Applied Mathematics of the Technical University of Moscow. He gained a Ph.D. in Applied Mathematics in 1994, and a Postdoc in Mathematics in 2006 of the EMA University of Greifswald, Greifswald, Germany. He has experience in Applied Mathematics: optimal control, optimization, numerical methods nonlinear analysis, convex analysis, differential equations and differential inclusions, engineering mathematics; and Control Engineering: hybrid and switched dynamic systems, systems optimization, robust control, control over networks, multiagent systems, robot control, Lagrange mechanics, stochastic dynamics, smart grids, energy management systems.

4 weitere Werke von Vadim Azhmyakov:


Bewertungen


0 von 0 Bewertungen

Geben Sie eine Bewertung ab!

Teilen Sie Ihre Erfahrungen mit dem Produkt mit anderen Kunden.